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Abstract

Purpose – The purpose of this paper is to investigate the problem of entropy generation around a
spinning/non-spinning solid sphere subjected to uniform heat flux boundary condition in the forced-
convection regime.
Design/methodology/approach – The governing continuity, momentum, energy and entropy
generation equations are numerically solved for a wide range of the controlling parameters; Reynolds
number and the dimensionless spin number.
Findings – The dimensionless overall total entropy generation increases with the dimensionless spin
number. The effect of increasing the spin number on the fluid-friction component of entropy
generation is more significant compared to its effect on heat transfer entropy generation.
Research limitations/implications – Since the boundary-layer analysis is used, the flow is
presented up to only the point of external flow separation.
Practical implications – Entropy generation analysis can be used to evaluate the design of many
heat transfer systems and suggest design improvements.
Originality/value – A review in the open literature indicated that no study is available for the
entropy generation in the unconfined flow case about a spinning sphere.
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Nomenclature

a sphere radius

Be Bejan number, SHT/Stotal

cP specific heat at constant pressure

h local heat transfer coefficient

k thermal conductivity of fluid

K* interior-to-exterior thermal
conductivity ratio

m number of steps of the numerical
mesh network in the x-direction

n number of steps of the numerical
mesh network in the z-direction

Nu Nusselt number, 2ah/k

Pr prandtl number, �/�

q heat flux

r radial coordinate measured from the
sphere’s center

Re Reynolds number, 2U1a/�

sg total (due to both heat transfer and
fluid friction) entropy generation per
unit volume

Sg dimensionless total entropy
generation per unit volume given by
Equation (6), sga

2/k
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SHT dimensionless entropy
generation due to only heat
transfer

SF dimensionless entropy
generation due to only fluid
friction

STotal total entropy generation due to
both fluid friction and heat
transfer,¼ Sg,overall ¼

RR
Sg

dZ dX

t temperature

tw wall temperature

t1 free stream temperature

T dimensionless temperature,
T ¼ kðt � t1Þ=ðaqÞ

Ta Taylor number, Ta ¼ 4�2a4=�2

Tw dimensionless wall temperature,
Tw ¼ kðtw � t1Þ=ðaqÞ

u meridional (x-direction)
component of velocity

U dimensionless meridional
component of velocity, u=U1

u* velocity component in x-
direction for the potential flow
outside the external boundary
layer,�ð@ =@rÞ=ðr sin �Þ ¼
U1 sin �½1þ a3=ð2r3Þ�

U* dimensionless potential velocity
component in the x-direction for
external flow, u�=U1

U1 free stream velocity in the
exterior flow

V azimuthal velocity component
at any point

vo circumferential velocity at the
sphere’s surface, vo ¼ �ro

V dimensionless azimuthal
velocity component,
V ¼ v=�a

Vo dimensionless azimuthal velocity
component at the sphere’s
surface, Vo ¼ ro=a

w radial (z-direction) velocity
component

w* radial (z-direction) velocity
component for potential flow
outside the external boundary
layer, ð@ =@�Þ=ðr2 sin �Þ ¼ �U1
cos �½1� a3=r3�

W dimensionless radial velocity
component, w=U1

W* dimensionless radial velocity
component for the external
potential flow, w�=U1

X meridional distance (along the
circular generator of the sphere’s
surface) measured from the
stagnation point

�xx the projection of the meridional
coordinate x on the axis of
symmetry (sphere diameter
coincident with the stagnation line)

X dimensionless meridional
distance along the surface
measured from the stagnation
point, 2x/Re a

Z distance from the sphere’s surface
measured along the normal to the
surface in the radial direction,
being positive for the external flow
and negative inside the sphere

Z dimensionless distance
perpendicular to the surface in
the radial direction, z/a

Greek symbols

� boundary layer thickness

� center angle measured from the
frontal stagnation line.

� dynamic fluid viscosity

�* interior-to-exterior (liquid-to-gas)
dynamic viscosity ratio

� thermal diffusivity, K=�Cp

� 0 meridional shear stress at the
sphere surface, �@U

@ Z

��
o
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� dimensionless shear stress,
� 0

ffiffiffiffiffiffiffiffiffiffiffiffi
Re =2

p
=ð�U 2

1Þ
	 third spherical polar coordinate

 stream function of external
potential flow far away from the
sphere, given by  ¼ 0:5 u1 r2

sin2 �ð1� ða3=r3ÞÞ
� sphere angular velocity

Subscripts

F fluid friction component

g gas phase

H.T heat transfer component

o on the sphere surface

s at separation point

x in the meridional direction

Introduction
The problem of convection heat transfer around a sphere has gained enormous
attention in the literature due to its practicality in a wide range of industrial and
scientific applications. Moreover, entropy generation analysis can be used to evaluate
the design of many heat transfer systems and suggest design improvements. Two main
factors are responsible for entropy generation, namely, heat transfer across a finite
temperature difference and viscous friction. Enhancement concepts that improve heat
transfer should be considered for a better design of such equipment and therefore
reduce thermodynamic losses. Drost and White (1994) analysed the performance of a
heat pipe based on second law analysis and considered this analysis to be better than
the efficiency index for performance evaluation. Khalkhali et al. (1999) reported that
the convection heat transfer coefficient can be adjusted to minimize entropy generation
in a heat pipe system. They performed a parametric study in which the effects of
various heat pump parameters on entropy generations are examined. Demirel et al.
(1996) calculated the entropy generation to analyze convective heat transfer in a
rectangular packed bed. Entropy generation per unit volume were expressed
analytically and graphically. The entropy generation maps they obtained reveal
regions of excessive entropy generation

The energy and exergy analysis in the process of spray evaporation was performed
(Som and Dash, 1993). They considered the law of entropy generation presented in their
earlier work as fundamental equation to evaluate entropy generation rate due to
evaporation. They have also developed a theoretical model for exergy analysis of the
process. The minimization of entropy, its relation with fluid flow and heat transfer
problems was explained in detail (Fowler and Bejan, 1994) and in great detail Bejan
(1996) who expressed the equations of entropy generation for various cases and in
different flow geometries. One of the main objectives of this investigation is the
computation of entropy generation around solid spheres in an air stream (Pr ¼ 0.7). A
thorough search of the literature has revealed that this problem has not been tackled
yet. Therefore, the following summarizes the work done on flow around rotating solid/
liquid spheres in a gas stream.

Schlichting (1953), who used a momentum integral technique, and Hoskins (1954)
reported that the separation point of laminar boundary layer at the rear hemisphere is
advanced due to solid sphere rotation. The three dimensional flow around a spinning
body of revolution was analyzed by Parr (1964) using the boundary-layer theory. El-
Shaarawi et al. (1987a) have studied experimentally the laminar flow around a rotating
sphere in an air stream at a Reynolds number Re ¼ 10,000 and for spinning parameter
(Ta/Re2) values of 0, 1 and 5. El-Shaarawi et al. (1985, 1987b) developed a finite-
difference scheme for solving the boundary-layer equations governing the laminar flow
about a rotating solid sphere in an air stream parallel to the direction of the axis of
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rotation for high values of Reynolds number and spin parameter. They also reported
that increasing the spin parameter (Ta/Re2) shifts the point of laminar flow separation
forward. The induced laminar flow due to rotating solid sphere in a quiscent
environment was also studied numerically by El-Shaarawi et al. (1993). Rao and Sekhar
(1993) analyzed numerically the axisymmetric rotating flow around a spinning solid
sphere at small Reynolds numbers such that the diameter about which the sphere spins
lies along the axis of the rotating fluid. They solved the complete Navier-Stokes
equations in the stream function-vorticity format. Schmitt (1997) analyzed the viscous
flow around a sphere spinning at a constant angular velocity for large Reynolds
numbers.

The unsteady boundary-layer flow past an impulsively started translating and
spinning rotational symmetric body was studied by Ece (1992) where the stream
function and velocity swirl component were expanded in series powers of time. He
reported that the sphere rotation reduces the drag and the separation angle. Ferriera
et al. (1998) studied analytically the transient motion of a dense rigid sphere falling in
light liquid. They obtained closed form solutions of instantaneous position, velocity
and acceleration of the sphere under the influence of gravity through an incompressible
Newtonian fluid subject to an Oseen-type drag relationship.

Karlo and Tezduvar (1998) used a finite-element method to investigate the three-
dimensional unsteady flow past a sphere. Raghavarao and Pramadavalli (1989a, b)
studied the flow of steady incompressible fluid rotating with a constant angular
velocity and moving past a sphere for small values of Reynolds numbers where the
Navier-Stokes equations were linearized using the Oseen approximation. They
concluded that the rotation decreased the values of the stream function. Then, they
solved the nonlinear Navier-Stokes equations numerically in the stream function-
vorticity form and compared the results of their two models. The unsteady flow past a
sphere was investigated numerically for oscillatory and accelerated motion
respectively by Chang and Maxey (1994, 1995) at low to moderate Reynolds numbers.
Hase and Weigand (2003) studied numerically heat transfer enhancement due to
droplet deformation at high Reynolds numbers (up to Re ¼ 853). Time dependednt
heat and fluid flow around and inside a a single rising bubble was investigated
numerically by Lai et al. (2006) using axisymmetric bounary-fitted mesh.

El-Shaarawi et al. (1997) considered the flow about and inside a liquid sphere
moving steadily in another immiscible fluid; boundary-layer equations were used to
investigate the flow field for large values of Reynolds number and for a wide range of
interior-to-exterior viscosity ratio. The shear stress on the fluid-sphere-surface induces
internal motion inside the sphere which can be represented by the well known Hill’s
vortex. However, the strength of the vortex is reduced because of the presence of the
boundary layer in the liquid phase. Antar and El-Shaarawi (2002) studied the effect of
viscosity, spin and Reynolds number on the flow characteristics about a liquid sphere
in a gas stream. Antar and El-Shaarawi (2008) investigated the entropy generation
around a solid non-rotating sphere in forced-convection flow and uniform heat flux
boundary condition. They reported that the heat tranfer component of the entropy
generation is an order of magnitude higher than the fluid friction component for
Pr ¼ 0.7. However, as the value of Pr increases, entropy generation due to fluid friction
becomes significant and it dominates for Prandtl number values > 7.

It appears from the literature survey that entropy generation in confined flows were
reported in Bejan (1996), Sahin (1996, 1998), Datta (2000) and Yilbas et al. (1999)
However, to the best of the authors knowledge, other than the work carried out by
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Abu-hijleh et al. (1998, 1999) and Haddad et al. (2000) for entropy generation due to
laminar natural/forced convection over a cylinder and Antar and El-Shaarawi (2008) for
entropy generation around a solid non-rotating sphere in forced-convection flow, no
study is available for studying the entropy generation in the unconfined flow case about
a sphere.

This study is aimed at investigating the effect of forced-convection and rotation on
the entropy generation around a solid sphere subjected to uniform heat flux boundary
conditions. This work is believed to contribute in covering a gap in the open literature
on entropy generation in external flows around non-rotating/rotating objects in forced-
convection flow field.

Problem formulation
Flow field
Figure 1 shows the problem under consideration and the coordinate system. The flow
field is assumed to be axisymmetric (@=@’ ¼ 0) and the fluid has constant properties.
The effects of chemical reaction, compressibility and surface active impurities are
considered to be absent. Reynolds number is assumed large enough for the boundary-
layer model to be applied.

Using the dimensionless parameters given in the nomenclature, the non-
dimensional continuity, momentum and energy equations are given by El-Shaarawi
et al. (1985, 1990) as:

Mass conservation

@ U

@ X
þ Re

2

@W

@ Z
þ U

R

dR

d X
þ Re

W

1þ Z
¼ 0 ð1Þ

Momentum conservation in meridional direction

U
@ U

@ X
þ Re W

2

@ U

@ Z
� Ta

Re2

V 2

Ro

dRo

dXo
¼ U �

@ U�

@ X
þ @2 U

@ Z 2
ð2Þ

Momentum conservation in the azimuthal direction

U
@ V

@ X
þ Re W

2

@V

@ Z
þ UV

Ro

dRo

dXo
¼ @2 V

@ Z 2
ð3Þ

Figure 1.
Coordinate system
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Energy equation

U
@ T

@ X
þ Re W

2

@ T

@ Z
¼ 1

Pr

@2 T

@ Z 2
ð4Þ

The above equations are coupled and subject to the following boundary conditions.

For Z ¼ 0;X ¼ 0 ðstagnation pointÞ : U ¼W ¼ V ¼ 0; T ¼ T1
For Z ¼ 1;X � 0 ðfar away from the sphereÞ : U ¼ U�;V ¼ 0;T ¼ T1
For Z > 0 and X ¼ 0 ðfront stagnation lineÞ : W ¼W�;U ¼ V ¼ 0;T ¼ T1

For Z ¼ 0;X > 0 ðsphere surfaceÞ : U ¼ 0;V ¼ Re

2
Ro

9>>>=
>>>;
ð5Þ

W ¼ 0, q ¼ constant for constant heat flux case

Calculation of the entropy generation
The local (at some point or location in the solution domain) total entropy generation is a
result of heat transfer (through the temperature gradients) and fluid friction (through
the velocity gradients). Viscous dissipation appears in both the energy equation and
the entropy generation equation. Viscous dissipation should be considered in cases
where velocities are near and higher than the sonic speeds and external fluid viscosity
is sufficiently high. Usually, one can neglect the dissipation term in the energy equation
(if the flow velocity is relatively low) whereas the dissipation term in the entropy
generation equation could not be neglected. In the present paper, the dissipation term
in the energy equation is neglected and the entropy generation per unit volume as
given by Bejan (1996) is used. Accordingly, the local total entropy generation at a point
in the flow field (which has two components, one due to heat transfer and the other due
to fluid friction) is as follows:

Sg ¼
1

T2

@T

@Z

� �2

þ 4

Re2

@T

@X

� �2
" #

þ PrEcm

kt1
aq
þ T

�

2

@W

@Z

� �2

þ 4

Re2

@U

@X

� �2

þ W 2

ð1þ ZÞ2
þ 4

Re

@U

@X

� �
W

ð1þ ZÞ

þ W 2

ð1þ ZÞ2
þ U 2Cot2�

ð1þ ZÞ2
þ 2WUCot�

ð1þ ZÞ2

2
66664

3
77775

þ @U

@Z

� �2

þ U 2

ð1þ ZÞ2
� 2U

@U

@Z

1

1þ Z

 !
þ 4

Re2

@W

@X

� �2

þ 4

Re

@U

@Z

1

1þ Z
� U

ð1þ ZÞ2

 !
@W

@X

� �

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

ð6Þ

where Ecm here is the modified Eckert number given by: Ecm ¼ U 2
1=ðcpðaq=kÞÞ.
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The quantity kt1=aq that appears in the above equation is a dimensionless value
and it is a controlling parameter that depends on the values of the free stream
temperature, the heat flux, the fluid thermal conductivity and radius of the sphere.
Bejan number defined as the ratio between the heat-transfer component of the entropy
generation to the total entropy generation, is calculated and presented as a function of
the controlling parameters.

Numerical method of solution
The numerical grid is shown in Figure 2. A typical mesh point is (i, j) where i
designates the progress in the radial direction and j pertains to the meridional
direction. The value I ¼ 1 represents the surface of the sphere and i increases in the
radial direction till the edge of the boundary layer while j ¼ 1 represents the front
stagnation line and increases till the point of external flow separation is encountered
and the numerical solution is stopped.

The details of the numerical method of solution are given by Antar and El-Shaarawi
(2008) and only a pertinent brief is given here. The numerical solution starts by
specifying the values of Re, Ec, Pr, Ta/Re2, and kt1=aq. The azimuthal (V) momentum
equation is solved for the second meridional step ( j ¼ 2, i ¼ 1, 2, . . . , n � 1) by
applying Thomas method for solving the obtained (n � 1) simultaneous equations.
Having calculated the values of V at the second meridional step, values of T at the
second meridional step are similarly obtained using the energy equation. These values
are used to solve the meridional (U) momentum equation using the same method for
solving the obtained (n) equations in the meridional velocity values (U). Using the
computed values of T and U in the second meridional step, values of W are obtained by
solving the continuity equation through a step-by-step manner. After calculating the
temperature within the boundary layer, the local entropy generation term is then
calculated.

Then the solution is advanced for the next meridional step and the whole procedure
is repeated till the point of external flow separation, which is characterized by the
condition @U=@Z ¼ 0, is reached. Selection of n is done as follows. An initial value of n
will be assumed and then upon solving for the temperature, the value at the outermost
point is compared with free stream temperature. If they are close within acceptable
numerical tolerance, the solution is advanced to the next meridional station, otherwise
the value of n will be increased and the solution is repeated for the same meridional

Figure 2.
Numerical grid
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station until the computed values of T are accepted (if the same criterion is satisfied). In
order to find the separation angle precisely, the following is adopted. When the point of
separation is reached, the solution is stepped back to the previous meridional station
and the increment �� is changed to a smaller value (usually one tenth of the used ��)
and the solution is continued to find the separation point accurately.

It is worth mentioning that grid independence was checked after the program was
completed so that the obtained solution would be a grid independent one. In this
respect, very fine grid was used in places where very high gradients exist (for example,
near both the stagnation point and the point of external flow separation).

The overall total (due to both fluid friction and heat transfer) entropy generation can
be obtained by integrating the local total (due to both fluid friction and heat transfer)
entropy generation over the entire solution domain and is given by:

STotal ¼ Sg; overall ¼
ð ð

SgdZ dX

Discussion of results
Validation of the present code
For the sake of validation of the present code, a comparison between this study and the
previous work of Schlichting (1953) is shown Figure 3. This figure compares the
present results of the wall shear stress in the meridional direction for a given Reynolds
number with those of Schlichting (1953). It can be clearly seen that the results obtained
by the code used in present study are in good agreement with previous published
results. All the results presented in this paper are for kt1=aq ¼ 0:1

Effect of spinning on the entropy generation
The effect of spinning the solid sphere on the entropy generated in the boundary layer
is presented and discussed in this section. Figure 4 shows the effect of spinning the
sphere on the variation of the integrated (in the radial, i.e. Z, direction for each value
of �) local total entropy generation (due to both fluid friction and heat transfer) with �
(around the sphere) for given values of Reynolds number (Re) ¼ 10,000 and Ec ¼ 0.01.

Figure 3.
Shear stress around the

sphere
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Spinning has a negligible effect for small spinning numbers (Ta/Re2 ¼ up to 100).
However, as the spinning number is increased, an increase in the meridional velocity
component occurs, leading to an increase in velocity gradients, temperature gradients
and temperature. This increase in the meridional velocity is significant near the surface
of the sphere, resulting in a fluid acceleration due to the centrifugal force that is caused
by the rotation of the sphere. That all result in a significant increase in the entropy
generated within the boundary layer. Increasing the spin number (Ta/Re2) increases the
entropy generated as shown in the figure.

For a given spinning number (Ta/Re2 ¼ 5,000) and a given Ec ¼ 0.01, the variation
with � of the integrated local total entropy generation (i.e. entropy generated due to
both heat transfer and fluid friction integrated in the radial, i.e. Z, direction for each
value of �) is shown in Figure 5 at different values of Reynolds number. Noting that for
a given spinning number (Ta/Re2) increasing Re implies an increase in the spinning
velocity (i.e. an increase in the value of Ta), Figure 5 indicates that the simultaneous
effect of increasing Reynolds number and spinning leads to a significant increase in the
local average total entropy generation.

Figure 6 depicts the effect of Eckert number for given values of Reynolds number
and the spin number (Ta/Re2) on the variation of the integrated (in the radial direction)
local total entropy generation with the meridional angle. Increasing the Eckert number
increases the fluid-friction component of the entropy generation and accordingly
higher integrated local total entropy generation values are reported. The point of
maximum entropy generated is shifted forward in the meridional direction to match the
location of maximum velocity around the sphere (in the vicinity of � ¼ 60) at higher
values of Eckert number (Ec � 0.5) which confirms the dominating effect of fluid-
friction component of the entropy generation.

Figure 7 shows the variation of the overall (from front stagnation point till point of
flow separation) entropy components, namely, heat transfer and fluid friction
components with the spin number (Ta/Re2) for given Ec ¼ 0.01 and Re ¼ 10,000.

Figure 4.
Effect of rotation number
on the local average
entropy generation for
Re ¼ 104
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Increasing the spin number increases the velocity gradient within the boundary layer
and accordingly the temperature gradient (as the spinning number is increased, an
increase in the meridional velocity component occurs near the surface of the sphere,
resulting in a fluid acceleration due to the centrifugal force that is caused by the
rotation of the sphere, leading to an increase in velocity gradients, (El-Shaarawi et al.,
1985; 1987b). However, the figure shows that the effect of increasing the spin number
on the velocity gradient and hence the fluid-friction component of entropy generation is
more compared with its effect on the heat-transfer component. As the spin parameter is
increased significantly (approaching 104) the two components become of the same

Figure 5.
Variation of the local

average entropy
generation with Re for

Ta/Re2 ¼ 5,000 and
Ec ¼ 0.01

Figure 6.
Variation of the local

average entropy
generation with Ec

for Re ¼ 104 and
Ta/Re2 ¼ 5,000
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order of magnitude. This indicates values of the spin number at which we can actually
have significant component of fluid-friction entropy generation. This figure also shows
the changes of Bejan number (Be) with the spin number. Increasing the spin number
increases both the fluid friction and heat transfer components of the entropy generated.
However, since its effect on the fluid friction component is more compared with its
effect on the heat transfer component, the Bejan number accordingly decreases.

The variation of the overall entropy generation with Reynolds number is shown in
Figure 8 for Ec ¼ 0.01 at a value of the spin number Ta/Re2 ¼ 5,000. One would
anticipate that increasing Reynolds number would result in an increase in both fluid

Figure 7.
Variation of total average
entropy components with
Ta/Re2 for Re ¼ 104

and Ec ¼ 0.01

Figure 8.
Variation of the total
average entropy
components with Re for
Ta/Re2 ¼ 5,000 and
Ec ¼ 0.01
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friction and heat trasnfer components of the entropy generation. However, Figure 8
shows that at small values of Re, the heat-transfer component decreases and the fluid-
friction component increases with Re. Nevertheless, the overall total entropy generation
follows the trend of the heat transfer component. As the value of Re increases
(Re > 2,000), the figure shows a decrease in the heat transfer component of the overall
total entropy generation with Re up to a certain value of Re then it increases indicating
a point of minumum heat transfer entropy generation. This has a significant effect on
the overall total entropy generation at this low value of Ec as shown in the figure. This
explains also the significant variation in the values of Bejan number (Be) as Re
increases.

Significant values of fluid-friction component of the overall total entropy generation
are expecetd at higher Eckert number values. This is shown in Figure 9 for given
values of spin number (Ta/Re2) of 5,000 and Re ¼ 10,000. As the value of the Eckert
number increases, the fluid friction component of the entropy generation becomes more
significant till it dominates and becomes more than the heat transfer component. This
trend is also indicated by the values of Bejan number that decrease with Ec indicating
the significance of the fluid friction entropy generation. It may be noted here that the
value at which the fluid friction component becomes equal in magnitude to the heat
trasnfer component in this case is about 0.05 whereas results of non-spinning sphere
indicate that, if spinning was absent, higher value of Ec number would be required to
get the same effect of equal magnitudes of entropy generation components (heat
trasnfer and fluid friction components).

Conclusions
The problem of entropy generation due to forced-convection flow around a rotating
solid sphere in an air stream is solved numerically for uniform heat flux boundary
conditions. The effects of Reynolds, the spin and Eckert numbers on the entropy
generation were investigated. It has been observed that, for given Ec and Re, as the
spin number (Ta/Re2) is increased, the dimensionless overall total entropy generation
increases constantly. However, the effect of increasing the spin number on the

Figure 9.
Variation of the total

average entropy
components with Ec

for Re ¼ 104 and
Ta/Re2 ¼ 5,000
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fluid-friction component of entropy generation is more compared with its effect on the
heat transfer component. Consequently, as the spin parameter increases the Bejan
number (Be) decreases; it reaches a value � 0.73 at Ta/Re2 ¼ 104. A further increase in
the spin number would make the fluid friction component of the entropy generated
much more than the heat transfer component and accordingly the Bejan number is
anticipated to further decrease to much less values.

At small values of Re, for given Ec and the spin number (Ta/Re2), the heat transfer
component of the entropy generated decreases while the fluid friction component
increases with Re. Thus, the fluid friction component has a more significant effect at
the small Re range on the total entropy generated. As the value of Re increases
(Re > 2,000), the results show a decrease in the heat transfer component of the overall
average entropy generation with Re up to a certain value of Re then it increases
indicating a point of minumum heat transfer entropy generation.
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